Emergent Non-Fermi-Liquid at the Quantum Critical Point of a Topological Phase Transition in Two Dimensions.

نویسندگان

  • Hiroki Isobe
  • Bohm-Jung Yang
  • Andrey Chubukov
  • Jörg Schmalian
  • Naoto Nagaosa
چکیده

We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion which displays relativistic dynamics along one direction and nonrelativistic dynamics along the other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO_{2}/VO_{2} superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in combination with the large-N expansion, we find that the system displays interaction-driven non-Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy E scales as Z∝E^{a} with a>0, and the parameters of the fermionic dispersion acquire anomalous dimensions. In the marginal Fermi-liquid regime, Z∝(|logE|)^{-b} with universal b=3/2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum critical “opalescence” around metal-insulator transitions

Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperature can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenom...

متن کامل

Hole dynamics in an antiferromagnet across a deconfined quantum critical point

We study the effects of a small density of holes, δ, on a square lattice antiferromagnet undergoing a continuous transition from a Néel state to a valence bond solid at a deconfined quantum critical point. We argue that at non-zero δ, it is likely that the critical point broadens into a non-Fermi liquid ‘holon metal’ phase with fractionalized excitations. The holon metal phase is flanked on bot...

متن کامل

Fermions and the AdS/CFT correspondence: quantum phase transitions and the emergent Fermi-liquid

A central mystery in quantum condensed matter physics is the zero temperature quantum phase transition between strongly renormalized Fermi-liquids as found in heavy fermion intermetallics and possibly high Tc superconductors. Field theoretical statistical techniques are useless because of the fermion sign problem, but we will present here results showing that the mathematics of string theory is...

متن کامل

String theory, quantum phase transitions, and the emergent Fermi liquid.

A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using th...

متن کامل

On non-Fermi liquid quantum critical points in heavy fermion metals

Heavy electron metals on the verge of a quantum phase transition to magnetism show a number of unusual non-fermi liquid properties which are poorly understood. This article discusses in a general way various theoretical aspects of this phase transition with an eye toward understanding the non-fermi liquid phenomena. We suggest that the non-Fermi liquid quantum critical state may have a sharp Fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 116 7  شماره 

صفحات  -

تاریخ انتشار 2016